## Exercise 13

For the following data, draw a scatter plot. If we wanted to know when the temperature would reach $28^{\circ} \mathrm{F}$, would the answer involve interpolation or extrapolation? Eyeball the line and estimate the answer.

| Temperature, ${ }^{\circ} \mathbf{F}$ | 16 | 18 | 20 | 25 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Time, seconds | 46 | 50 | 54 | 55 | 62 |

## Solution

Graph the following points on a coordinate system: $(46,16),(50,18),(54,20),(55,25)$, and $(62,30)$.


Mathematica's FindFit function is used to determine the line best fit to represent the data. Since 28 lies inside the range of the data we have $(16 \leq y \leq 30)$, this is interpolation. Set the output equal to 28 and solve for $x$, the time.

$$
\begin{gathered}
28=-26.8268+0.9106 x \\
54.8268=0.9106 x \\
x=\frac{54.8268}{0.9106} \approx 60.21
\end{gathered}
$$

According to the model, the temperature becomes $28^{\circ} \mathrm{F}$ at about 60 seconds.
[TYPO: The answer at the back of the book should be in seconds, not Fahrenheit.]

